
CONJUNCT: Learning Inductive Invariants to Prove Unbounded Instruction Safety
Against Microarchitectural Timing Attacks

Sushant Dinesh
University of Illinois
Urbana-Champaign

sdinesh2@illinois.edu

Madhusudan Parthasarathy
University of Illinois
Urbana-Champaign
madhu@illinois.edu

Christopher W. Fletcher
University of Illinois
Urbana-Champaign

cwfletch@illinois.edu

Abstract—The past decade has seen a deluge of microarchi-
tectural side channels stemming from a variety of hardware
structures (the cache, branch predictor, execution ports, the
TLB, speculation, etc). These attacks stem from software
that passes sensitive data to so-called unsafe or transmitter
instructions, i.e., those whose execution time depends on their
operands’ values. Correspondingly, there has been a large
number of defenses (spanning hardware and software) that
attempt to enforce the policy: sensitive data ↛ unsafe in-
struction operand. Implementing this policy assumes that one
can identify unsafe instructions for a given microarchitecture.
But this is quite difficult—requiring the designer to analyze
potentially unbounded compositions of dynamic instructions to
tease out subtle interactions they may have with one another.

This paper addresses the above challenge by proposing
CONJUNCT. Given RTL: CONJUNCT proves, for all possible
executions, whether each ISA instruction is either i) safe for an
unbounded number of cycles or ii) unsafe. This is done using
a combination of symbolic analysis (to generate examples) and
inductive invariant learning (bootstrapped by said examples),
and enabled by a novel conditional information flow predicate
that we show is useful for analyzing information flows in
processor pipelines.

We demonstrate our analysis on several RISC-V microar-
chitectures of varying complexity, and use it to extract the
safe/unsafe sets for each. Through a judicious use of program
synthesis, we are able to automate the analysis (almost entirely)
from end to end, e.g., requiring only 8 designer annotations
to fully analyze the RISC-V RocketChip core. Lastly, we show
through several case studies how CONJUNCT can be used by
microarchitects to understand the security implications of an
advanced optimization, and how the invariants generated by
CONJUNCT can be used to localize where in the microarchi-
tecture unsafety occurs.

1. Introduction

It is well known that microarchitectural optimizations—
such as the cache and branch predictor—leak program
privacy through timing (or microarchitectural) side chan-
nels [1]. To comprehensively mitigate these attacks, a mul-
titude of software and hardware defenses (some commer-

cialized [2], [3], [4]) strive to enforce/support enforcing
the following policy for sensitive programs: that no so-
called unsafe (or transmit) instruction in the program should
compute on secret data (i.e., receive secret data as its
operand) [5], [6], [7], [8], [9], [10], [11], [12], [13].
Here, an unsafe instruction is one whose execution creates
observable timing differences as a function of its operand
values. For example, in the widely deployed constant-time
programming paradigm, high-value programs are carefully
written by the programmer or compiler to enforce this
policy [5], [6], [8], [14], [15].

Today, a major assumption made by all of the above
defenses is that the set of unsafe instructions is known
and correct. This assumption is perilous. Commercial-scale
microarchitecture is incredibly complex and the hardware
optimizations that lead to instruction unsafety leave only
subtle footprints on the design (e.g., change only design
timing, not functionality). Making matters worse, there is
mounting evidence to suggest that future microarchitectures
will include increasingly exotic optimizations, impacting
instructions once thought to be safe [16], [17], [18], [19].

In light of the above, this paper develops CONJUNCT:
an automated analysis framework that, given a microarchi-
tecture’s RTL, determines which subset of instructions are
safe (non-transmitters) for the given RTL.

The notion of when instructions are unsafe is hard to
define and analyze. Instructions that are individually safe/se-
cure may cease to be safe when composed, even with them-
selves, as leakage of data through side channels (including
timing) can occur in any cycle, and through a sequence of
state changes cause information flow. Many unsafe/insecure
instructions can be detected using symbolic execution of
bounded instruction compositions followed by logic satisfi-
ability engines. However, proving that a set of instructions is
safe under unbounded composition requires establishing an
inductive invariant over microarchitectural states that proves
that unbounded executions of these instructions keep secrets
unrevealed. These invariants are relational invariants that
relate the states of any program composing these instructions
executed on two different inputs that differ only on secret
data. Such relational invariants are difficult to express (let
alone discover) in the context of modern microarchitectures.

CONJUNCT addresses these challenges and automati-

cally constructs relational invariants using a combination
of symbolic analysis and invariant learning, inspired from
techniques in program synthesis [20], [21], [22], [23], [24].
This invariant is used to derive the set of safe and unsafe
instructions in the ISA, and prove that the instructions in the
safe set will never cause a safety violation for an unbounded
number of cycles. We also show how the invariant can be
useful for subsequent analyses, e.g., for pinpointing the ‘root
cause’ of an instruction’s unsafety.

We formulate the above as an invariant learning problem
in the theoretical framework SORCAR [23] (which enhances
the famous Houdini algorithm [25]), a methodology for
learning conjunctive invariants from examples.

At the top level, the CONJUNCT analysis proceeds in
two phases. In Phase 1, we design a symbolic execution-
based analysis (similar to ‘bug finding’ in other domains)
that starting from all possible microarchitectural states, ei-
ther: (i) finds that an instruction is unsafe, or (ii) proves
that an instruction is safe for a bounded number of cycles.
These results from Phase 1 are used to bootstrap inductive
invariant learning in Phase 2.

In Phase 2, our first main contribution is to develop an
invariant language that is rich enough to express relational
invariants for real-world microarchitecures while at the same
time being amenable to learning and minimizing designer
intervention/annotation. Our key insight is that unsafety in
designs can be expressed as conjunctions of conditional
information flow rules, where each rule states that secret
data should be allowed to flow into some state element s
only if the value in some other state element(s) s′ satisfies
certain conditions. An example of such a rule might be:
secrets should not be allowed to flow into the input latch
of a variable-time multiplier (s) if another state element s′
(that stores control values for that pipeline stage) indicates
that the opcode is multiply.

Automatically synthesizing an invariant expressed as
conjunctions of the above conditional information flow rules
is non-trivial. That is, for a given s, there is an exponential
number of collections of state elements s′ (and functions
over those state elements) that could be considered as pred-
icates in the final invariant. Using information embedded
in the results from Phase 1, we develop an automated
procedure for synthesizing the overall invariant from the
above rules, working in tandem with a verification engine.

Putting everything together, we implement our analysis
and apply it to several microarchitectures (the RISC-V V-
Scale, Ibex, and RocketChip cores). Our analysis is able to,
relatively quickly (on the timescale of hours), analyze and
derive invariants—along with unsafe/safe sets—for all three
with 3, 7 and 8 expert annotations each, respectively.

Beyond safe set and invariant synthesis, we demonstrate
usage scenarios and framework capabilities for CONJUNCT
in two case studies. First, we show how information con-
tained in invariants synthesized by CONJUNCT can be used
to localize where (e.g., in what pipeline stage/state element)
unsafety for a particular instruction originates in the design.
Second, we show how CONJUNCT enables microarchitects
to reason about the safety of proposed microarchitectural

optimizations. Specifically, we implement two computation
reuse schemes [26], an exemplar advanced microarchitec-
tural optimization, on top of the Ibex core. We use CON-
JUNCT to confirm a hypothesis made in Vicarte et. al. [16]:
while one of the two optimization variants creates new
instruction unsafety, the other does not. This shows how
CONJUNCT can be used to assist in the design of safe and
performant microarchitecture.

In summary, we make the following contributions.
1) We propose CONJUNCT, the first unbounded analysis

for determining which instructions are safe for a given
microarchitecture.

2) We propose an invariant language that is sufficiently
rich to derive inductive invariants for real-world mi-
croarchitectures, along with automated techniques for
selecting invariants from this language for a particular
microarchitecture.

3) We implement and demonstrate how our analysis,
based on symbolic execution as well as invariant syn-
thesis, is able to deduce the safe set for three RISC-
V microarchitectures of varying complexity (V-Scale,
Ibex, RocketChip). Analysis for each took from min-
utes to a day, and required no more than 8 designer
annotations per design.

4) We perform two case studies to demonstrate CON-
JUNCT’s capabilities. First, we show how CONJUNCT
can be used to localize where unsafety originates from
in a design. Second, we show how CONJUNCT can be
used by microarchitects to evaluate the security prop-
erties of proposed microarchitectural optimizations.

The open-source release of CONJUNCT can be
found here: https://github.com/FPSG-UIUC/
conjunct.

2. Background and Motivation

There is a rich literature on how programs interacting
with hardware resources (e.g., the cache [27], [28], [29],
TLB [30], branch predictor [31], [32], functional unit ex-
ecution ports [33], [34], [35], complex arithmetic instruc-
tions [36], [37], [38], speculative execution [39] and oth-
ers [40]) can create side channels and leak program privacy.

Despite the apparent complexity in this space, however,
the root cause of the above attacks can be attributed to a rel-
atively small number of unsafe instructions whose execution
timing is a function of their operand values. For example, the
root cause of conflict/alias-based attacks in the cache, TLB,
page walker, etc., is that a secret was passed to the address
operand of a memory instruction [28], [30], [41], [42], [43].
Beyond memory instructions, several other instruction types
(namely branch instructions [5], [44] and specific complex
arithmetic operations [36]) are well-known transmitters.
This has led to a line of hardware and software defenses [5],
[6], [7], [8], [44], [45], [46], [47], [48], [49] (and many
more) that aim to prevent the flow of secrets to the operands
of unsafe instructions. Notably, this defense policy is capa-
ble of mitigating not only ‘classical’ timing channels [5] but

https://github.com/FPSG-UIUC/conjunct
https://github.com/FPSG-UIUC/conjunct

also the more recent speculative side channels [7], [9], [39],
[45]. For example, Spectre attacks [39] are due to secret data
being passed to the operands of unsafe instructions that are
executing speculatively; this understanding is used to cast
defenses in terms of well-known paradigms like constant-
time programming [11], [12], [45], [50].

Thus far, a saving grace for the above defenses has been
that (even across microarchitectures), the set of unsafe in-
structions has remained mostly unchanged. That is, branches
are inherently unsafe because they influence the number of
instructions executed by the program which in all practical
scenarios influences the program’s timing. Likewise, mem-
ory instructions are unsafe whenever the system supports a
cache (which is to say, nearly always). This simplifies the
above defenses: without a careful analysis of each target
microarchitecture, they can disallow secret-dependent flows
to a fixed and known set of instructions.

This paper’s premise is that determining each microar-
chitecture’s set of unsafe instructions will become a more
difficult problem as we continue to develop microarchitec-
ture in the post-Moore era. Specifically, as scaling slows,
one avenue to continue improving performance is to im-
plement software-invisible optimizations (or fast paths) to
different instructions [16], [18] to optimize their common
case behavior. Vicarte and Deng et al. [16], [18] describe
several families of optimizations that fit this mold:

• Computation simplification / elimination optimizations
(e.g., [51], [52], [53]) have been proposed for many
arithmetic operations to take advantage of operation-
specific identity and absorption properties. For exam-
ple, that x & 1 = x.

• Computation reuse optimizations (e.g., [26], [54], [55])
memoize computation when the same instruction(s) are
executed twice with the same operands.

• Value prediction (e.g., [56], [57], [58]) saves cycles
when an instruction returns a predictable result.

• Significance compression (e.g., [59], [60], [61]) im-
pacts performance depending on the position of the
high-order on bit in each program word.

• Silent stores (e.g., [62], [63], [64]) impact whether
stores need to be performed by inspecting the contents
of memory at the store address.

These optimizations significantly complicate security au-
dits on processor pipelines. For example, Vicarte et al. [16]
describes how:

• The above optimizations are seldom implemented in
the processor’s ‘Execute’ stage/ALUs. For example,
even computation simplification [51], which is typically
associated with ‘Execute’, is often implemented in an
earlier stage (e.g., register file read) to increase its
performance benefit.

• The above optimizations may only activate based on
the combined behavior of multiple in-flight instructions.
For example, operand packing [59] only activates when
two arithmetic instructions co-located to the same exe-
cution port both have ‘narrow’ operands, i.e., operands
whose most-significant 1 bit is in a low bit index.

• The above optimizations may leave microarchitectural
traces that modulate channels long-after the offending
instruction retires. For example, silent stores [62] may
not effectuate a performance improvement until the
store in question is at the head of the store queue (i.e.,
after the store officially retires).

Putting the above together, auditing a pipeline to deter-
mine which instructions are unsafe may soon become highly
non-trivial: requiring analyses a) over multiple pipeline
stages and interactions across stages (as opposed to ‘just’,
say, auditing the Execute stage logic in isolation), b) that
explore how different combinations of instructions interact
with each other (as opposed to analyzing each in isolation),
and c) that analyze pipeline state for an unknown number
of cycles after instructions finish their execution/retire.

Summary of our analysis. §3-§5 proposes a framework
and automated analysis that discovers, given a processor’s
RTL as input, which instructions are unsafe on that RTL.
Our analysis considers arbitrary compositions of instructions
and their executions over an unbounded number of cycles
over the entire pipeline, and hence is able to cope with the
nuances of the hardware optimizations described above.

Our technical contribution is broken into three sections.
First, §3 defines the problem. As summarized in §1, the
analysis itself is broken into two phases. First, we perform
a bounded analysis over a fixed number of cycles (§4)
which generates examples, along with a preliminary set of
unsafe and potentially-safe instructions. Second, we use the
examples/preliminary unsafe set to bootstrap invariant learn-
ing (§5) and prove safety of instructions for an unbounded
number of cycles.

3. Preliminaries and Problem Definition
Let us fix a design-under-test D with a finite set of state

variables V in D. The set Zbv is a domain of n-length bit
vectors, for some n, as in the width of elements in V.

Definition 3.1. State (s): A state is a mapping V → Zbv.
Let S denote the set of all states. Let us fix a set

of opcodes Opcodes. For each opcode, we fix a set of
parameter variables −→pv, i.e., operand labels. An instruction
is a tuple (opcode,−→pv), where opcode ∈ Opcodes.

Definition 3.2. State Machine (C): A finite state machine
C is a tuple (S, sinit, R,Σ, O,⇝). Here sinit ∈ S is the special
initial state, e.g., the reset state of the machine. R ⊆ V
act as sources of secret data. Σ is a set of input symbols.
Each input symbol is an instruction of the form (opcode, p⃗v)
or is the special symbol ϵ (no instruction).1 O ⊆ V is a
set of output variables or attacker-observable variables/the
attacker’s view. The partial function ⇝: S × Σ → S is the
state transition function that maps a state and input symbol
to the next state.

Let s⇝a s′ denote that⇝ (s, a) is defined and is equal
to s′ where a ∈ Σ.

1. Like a processor, the machine may not take a new instruction in each
step, if a step is a cycle.

Definition 3.3. Trace (π): Let w represent a sequence of
instructions a0, a1, . . . , an. A trace of C over w starting at s0
is a finite sequence of states of the state machine C s0 ⇝b0

s1,⇝b1 . . . ⇝bm sm where each bi ∈ Σ (an instruction or
ϵ) and such that w = b1 . . . bm.

Note that in the above, the sequence b1, . . . , bm may
include ϵ, and the condition w = b1 . . . bm says that the
concatenation of the bi’s (where ϵ vanishes) is equal to w.

Let s ⇂ O denote the projection of the state s onto O.

Definition 3.4. Trace Distinguishability: Two traces π, π′

over a sequence w (with different start states) are trace dis-
tinguishable if they are of different lengths, or they are of the
same length with π = s0, s1, . . . , sn and π′ = s′0, s

′
1, . . . , s

′
n

such that for some j ∈ [0, n], sj ⇂ O ̸= s′j ⇂ O.

Definition 3.5. Equal-modulo-secret (≈sec): Let ≈sec be
the relation over S×S such that, ≈sec relates two states s, s ′
if ∀v∈V\R s[v] = s ′[v], where V \ R denotes set difference
and s[v] is the value of v on s .

In other words, two states are equal-modulo-secret if the
values of non-secret variables are the same.

Definition 3.6. Safe Instruction Set Problem: Find a
maximal Σ+ ⊆ Σ (the set of safe instructions on D) such
that: for every sequence of instructions x over Σ+, and for
every (sL, sR) where sL ≈sec sR, the pair of traces (πL, πR)
of C over x starting from states (sL, sR), respectively, are
not trace distinguishable.

We instantiate the above framework for microarchi-
tectural designs-under-test D, where the state machine C
captures the execution semantics of D written in Verilog
and V is the set of state elements (or registers) in D. The
safety of instructions needs to hold for traces of unbounded
length.

The next two sections develop the symbolic execution-
based bounded analysis (§4) to determine the set of poten-
tially safe instructions, i.e., that are candidates for inclusion
in Σ+. More precisely, we discard instructions (opcodes
with parameters) that clearly leak secrets. Later, in §5, we
learn an invariant that will prove the safety of instructions
and their composition, thereby deriving the safe set of
instructions Σ+ as defined above.

Remarks regarding Def. 3.6. We make two remarks
regarding the definition.

First, we ask for any maximal safe set as a unique
maximum safe set may not exist and the maximal safe sets
may not be comparable. Ideally, we would like an analysis
to be able to list out all such maximal safe sets. However,
we note that in our evaluation, all the maximal safe sets
were unique and also the maximum. Hence, this alternative
formulation of the problem does not yield any additional
safe sets.

Second, certain usage scenarios (e.g., constant-time pro-
gramming) assume that unsafe instructions can be executed
in composition with safe instructions, subject to the con-
straint that unsafe instruction operands only see non-secret
data. Our definition only concerns compositions of safe

Name Symbol Description

Design D Microarchitecture design-under-test.
Concrete State s A state with concrete assignment to

state elements, usually generated by a
counterexample.

State S A mapping of all microarchitectural
state elements, e.g., wires and regis-
ters, to both concrete and symbolic
values.

Input Vocabulary Σ Set of all instructions plus the special
symbol ϵ.

State Transition ⇝ A partial function mapping S×Σ → S
Trace π A sequence of states S0 ⇝a0

S1 ⇝a1 . . .⇝an−1 Sn.
Instruction a An instruction from the ISA.
Instruction Under Test
(IUT)

aIUT Instruction whose execution we are an-
alyzing for safety.

Program P A static sequence of instructions rep-
resented as a word w over Σ.

Attacker View S ⇂ O A projection of state S to attacker
observation variables (O).

Secret Sources and Data R,
Dsecret

R ⊆ V annotated to be sources of
secret data (Dsecret).

Safety Safe(S) A predicate that evaluates to true if
S is safe, and false otherwise.

Unsafe Set U Set of unsafe instructions output by the
bounded analysis.

TABLE 1: A summary of all definitions used in CONJUNCT.

instructions. We note that the invariants generated in §5 do
not preclude injecting unsafe instructions, and will soundly
detect when doing so can violate security. However, the
current analysis does not provide guarantees on precision
in the regime where unsafe/safe instructions are composed.
That is, it will not necessarily recognize that a given safe
composition of safe/unsafe instructions is indeed safe. We
leave addressing this issue to future work.

4. Phase 1: Bounded Analysis

In this section, we build on the terminology defined in §3
to develop our symbolic execution-based analysis on hard-
ware designs described, e.g., in Verilog. For convenience,
terms defined are summarized in Table 1.

We build on previous definitions and define a Program
(P) as a sequence of instructions a0, a1, . . . , an where aj ∈
Σ. The transition function⇝a is derived from the execution
semantics of D, e.g., written in Verilog.

CONJUNCT analyzes the safety of each instruction in
a ∈ Σ using symbolic execution. We denote the current
instruction-under-test (IUT) as aIUT . As we want to capture
all possible interactions of aIUT with other instructions in
the pipeline, we consider the analysis of aIUT as a part of
a larger program P = aIUT ∥Ps, where Ps is any possible
suffix program.2

We augment the definition of state s from Def. 3.1 by
allowing assignment of symbolic values to variables. To
disambiguate from here on, an uppercase boldface S refers
to states that may have a symbolic or concrete assignment
to each variable, while the lowercase s refers to states with
concrete assignments only.

2. Although we write P as having a suffix but not prefix program, the
application of P in §4.1 will be equivalent to considering P with an
arbitrary prefix program.

Constructing all pairs of (sL, sR). As analyzing the
execution of aIUT from every possible pair of concrete
states is not possible, we analyze the execution from a
fully symbolic start state (S) instead.3 We first duplicate
a fully symbolic state S to obtain (SL,SR). We extend the
definition of ≈sec on concrete states to operate on symbolic
states. We say two symbolic states S,S′ are S ≈sec S′

when ∀v∈V\RS[v] ≡ S′[v], where ≡ is symbolic equivalence
between the expressions which could be implemented, e.g.,
using an SMT solver. Note that SL ≈sec SR trivially as all
state elements are equal. Next, ∀rr ∈ R we set SL and SR

to hold different (secret) symbolic values. We say a variable
v ∈ V is symbolic constrained if it is symbolic and is equal
in L and R (SL[v] ≡ SR[v]) and symbolic unconstrained if
v is symbolic and need not be equal in L and R. Now, the
pair (SL,SR) are still SL ≈sec SR and represent all possible
pairs of (sL, sR). Note that this may also include states that
are unreachable in the microarchitecture.

Product Construction for Two-Safety. For convenience,
we can construct a product state S = (SL · SR), where ·
represents concatenation. This is the well-known construct
of a product program [65], [66] used for checking two-safety
properties such as non-interference and is equivalent to a
miter circuit used in the architecture community [67]. From
here on, S will refer to a product state that holds variables
for both L and R executions of the microarchitecture.

SafeO (S). We define a predicate Safe that evaluates to
true on a state S if S is safe: Formally, let (SL ·SR) = S.
S is Safe wrt. O if SL ⇂ O ≡ SR ⇂ O. Note that we
will omit the subscript and say Safe(S) (or Safe) when the
observer model (and state S) is clear from the context.

Defining Secret Data (R). We require that the designer
annotate the secret sources R. In the safe instruction set
problem, R is set to the architectural register file. (This
special case of Def. 3.6 is formalized in §6.1.) We will refer
to the (symbolic unconstrained) secret data released by the
register file as Dsecret.

Controlling the Release
of Secret Data. Since
the analysis is over a
single instance of aIUT

(but in the context of
an infinitely long P),
we further need to limit
the release of Dsecret so
that only aIUT receives
it. Thus, our symbolic
interpreter treats p⃗vIUT ,
of aIUT , differently from
those of other instruc-
tions and only releases
Dsecret from the register
file when it is being ac-
cessed by aIUT .

Register FileRegister File
select

Bypass Path

M

MM

Figure 1: Multiple sources for
operand values. Operand values for
instructions may either arrive from
the register file or along the bypass
path and is selected by the control
variable to the MUX, select. Each
, represents a potential source of
unsafety.

3. Such a fully symbolic state S can represent all possible states si ∈ S.

This does not prevent aIUT from forwarding a function of
Dsecret to later instructions. We address this in §4.1.1.

Soundness of analysis in the presence of corner cases. In
the above, we only annotate the architectural register file as
R and only release secrets from R in a single cycle (when
they are read for each aIUT). Can this miss cases where the
instruction computes on data from a bypass path (see (ii) in
Figure 1)? Can this miss cases where multiple aIUT need
to receive secret data and interact for unsafety to manifest?
We prove in §6.1 that our complete analysis is sound and
handles these cases, while requiring only the above specified
annotation burden.

4.1. Symbolic Execution

Algorithm 1: Symbolic Execution-based analysis.
Data: O , K , aIUT , Ps

Result: Safe or Unsafe(cex)
1 S = symbolic-start-state();
2 P ′ = aIUT ∥ Ps;
3 for i ∈ (0...K) do
4 a = pop(P ′);
5 S′ = ⇝(S, a);
6 cex = check-safety(S′, O);
7 if cex then
8 return Unsafe(cex);
9 end

10 S = S′

11 end
12 return Safe;

Using the ideas from the previous subsection as building
blocks, we now describe the bounded analysis (the first
phase of CONJUNCT). The goal is to discover a preliminary
set of unsafe instructions and “potentially safe” instructions
(i.e., those where no security violation was found for a
bounded number of cycles), along with their execution
traces. These will be used to bootstrap the invariant learning
stage (§5).

This process is, itself, two parts. The high-level algo-
rithm for both parts is shown in algorithm 1 and takes the
following as inputs: O : the attacker observation variables,
K : the max number of cycles to run the analysis for, aIUT :
the aIUT ∈ Σ representing the instruction-under-test (IUT),
and Ps: the suffix program to execute after the IUT, and
returns either Safe indicating that aIUT is safe up to the
bound K or Unsafe with a counterexample that violates
the safety property. The two parts of the bounded analysis
involve calling the above algorithm twice, with different
arguments passed to the Ps parameter each time.

The analysis starts from a symbolic-start-state
which initializes a blank state where all microarchitectural
variables in S are symbolic and constrained to be equal
on the left and right executions of the design. See §4
“Constructing all pairs...” for details. Then, on line 2 the
algorithm constructs P ′, a concatenation of the IUT aIUT

and the suffix program Ps. Now, in each step, the next in-
struction a is popped from P ′ and used to generate the new
state S′ by evaluating⇝ (S, a). Next, the check-safety
function uses O to check if the state S′ is Safe by querying
an off-the-shelf SMT solver, e.g., Z3 or CVC5. If the
SafeO (S′) evaluates to true, then the state passes the safety
check. Otherwise, check-safety returns Unsafe and a
counterexample to the safety property, i.e., an assignment
to variables in S′ that leads to the safety violation. A
counterexample indicates that one or more of the assertions
are violated, in which case the design is unsafe with respect
to O and aIUT . Therefore, the overall analysis terminates
with Unsafe and returns the counterexample. The loop is
repeated for a maximum of K iterations by popping the
next instruction a from Ps in each iteration, and returns
Safe if safety is not violated for K steps.

4.1.1. Attributing Blame for Unsafety
As we alluded to earlier, younger instructions in the

pipeline (part of Ps) may eventually interact with secret
data from aIUT through architectural data dependencies
with aIUT , microarchitectural state set by aIUT , etc. This
creates a blame attribution problem: if a safety violation
occurs due to the execution of aIUT followed by some
instruction a ′, should aIUT be deemed unsafe, or should
a ′? Suppose a ′ is actually unsafe. In that case, we risk in-
correctly blaming aIUT , which could lead to false positives
in the overall analysis.

To solve the above problem, we perform the above
symbolic analysis in two parts while varying the instructions
allowed in the suffix program Ps. In part (i), we try to find
instructions whose executions are unsafe independently, i.e.,
we set Ps to only contain nop’s. Therefore, any safety viola-
tion we find in this phase can be attributed to the instruction-
under-test aIUT (as the only source of unconstrained data
is from the register read on behalf of aIUT). From this
part (i) we get a list of unsafe instructions, U, and a list
of potentially safe instructions Σ̂+

(i). Here, the subscript (i)
refers to the safe set after phase (i) of the bounded analysis.
Note that by only allowing nops in this phase, we have
bypassed the issue from the previous paragraph.

Next, in part (ii), we re-analyze the instructions Σ̂+
(i)

for safety while constraining the suffix program Ps to
only contain instructions from Σ̂+

(i). Any safety violation
now is due to interactions between aIUT and one or more
instructions a ′ in Ps. In this case, we make a conservative
assumption and treat both aIUT and a ′ (i.e., all instructions
a′ in the suffix) as unsafe. This could be optimized for
improved precision in a variety of ways. For example, with
more expressive specifications we believe we could more
accurately capture that the interaction of aIUT and a specific
a ′ is unsafe, but leave this for future work. The implications
of this in the precision of the overall analysis is discussed
in §6.2.

At the end of this two-phase symbolic analysis we have a
list of instructions known to be safe for K cycles in arbitrary
composition with other potentially safe instructions (denoted
Σ̂+

(ii)) and a set of unsafe instructions U.

We remark that Σ̂+
(ii) satisfies the requirements for a safe

set in Def. 3.6, but only for the bounded K cycles.

4.2. Generating Examples for Learning

In addition to identifying the set of unsafe instructions
U, the bounded analysis also outputs a set of examples
used in the next phase (invariant learning). In this context,
each example is a microarchitectural state S we encounter
during the bounded analysis and contains a mix of concrete
and symbolic assignments to state variables. We generate
two types of examples: (i) positive examples are states that
are Safe and not known to lead to any unsafe states in the
bounded analysis, and (ii) negative examples are states that
are either not Safe or are known to lead to states that are
not Safe in the bounded analysis.

We now discuss each of these in more detail. Consider
the sequence of states in the trace generated by the symbolic
execution of an IUT, aIUT : S0,S1, . . . ,SK .

If aIUT is safe, then none of the states S0,S1, . . . ,SK

are unsafe. In other words, all possible concrete s repre-
sented by Si are safe. We will directly use each of the sym-
bolic states S0,S1, . . .SK as separate positive examples.

On the other hand, consider if aIUT was unsafe. In this
case, one of the Su fails the safety check and we get a
counterexample (cex), i.e., a concrete assignment of values
to V∗ ⊆ V that causes unsafety. Note that the cex gives us a
concrete state, i.e., an su that is actually unsafe, while other
concretizations of Su may still be safe. Therefore, we use
the information in the cex to concretize each of the symbolic
states S0,S1, . . . to generate concrete states s0, s1, . . ., i.e.,
the sequence of concrete states that will eventually lead to
the concrete unsafe state su. Each of these concrete states
si are used as separate negative examples.

5. Phase 2: Invariant Learning

The bounded analysis (§4) is useful to find instructions
that are unsafe but, being a bounded analysis, cannot prove
that an instruction that has been safe for K cycles will remain
safe under unbounded composition. The goal of this section
is to do exactly that: prove that a set Σ̂+

(ii) ⊆ Σ of potentially
safe instructions—instructions that have remained safe for
K cycles in the bounded analysis—remain safe forever.

To prove safety, we need to show that starting from a
safe state S we cannot reach an unsafe state through one or
more applications of ⇝a, where a is any instruction in the
ISA. To do this, we will define an invariant H such that for
a state S and invariant H,

S |= H =⇒ Safe(S) (1)

For this safety check to hold for an unbounded number of
cycles, we require H to be inductive. That is, satisfy a base
case and inductive step. Let P be the set of positive exam-
ples discovered during the bounded analysis. For the base
case, we require that H allow all such positive examples:

∀p ∈ P, p |= H. To satisfy the inductive step, we require
that

(S |= H) ∧ (S⇝a S′) =⇒ S′ |= H ∀a ∈ Σ̂+
(ii) (2)

An H-state is any state S that satisfies H. Therefore,
any H-state is Safe. Together, Equation 1 and Equation 2
guarantee that starting from an H-state we can never reach
an unsafe or non-H-state. Putting it all together, if H
holds for a state corresponding to all possible executions
of a potentially safe instruction, then we prove that the
instruction remains safe for an unbounded number of cycles.

Both Equation 1 and Equation 2 are checked using an
SMT solver (like CVC5). As both equations need to hold
for every state allowed by H, we perform the check on the
most permissive symbolic state S allowed by H. Such a
state S is constructed by first initializing a fully symbolic
state and then constraining S based on H.

Approach to construct H. The principle challenge in the
above is how to find an H for a given design D that is
both sound and precise, i.e., does not induce false positives
(preclude safe executions) or negatives (allow unsafe exe-
cutions). We would also, ideally, like for our invariant to
be minimal, i.e., contain as few predicates as possible. Such
‘smaller’ invariants typically lead to both improved analysis
time—for both our and any subsequent analysis [23]—and
as we later show in §7.4 is also useful in root cause analysis.
Constructing such an H by hand is impractical. Instead, our
approach is to automatically synthesize H.

At the high level, we follow the blueprint established
by the invariant learning framework called SORCAR [23].
SORCAR describes a theoretical framework for learning con-
junctive invariants from examples, which is an improvement
over the well-known Houdini algorithm [25], for learning
invariants when the number of predicates is very large.
SORCAR is a theoretical framework that works by proposing
invariants in each round along with a verification engine
that produces counterexamples to incorrect invariants. SOR-
CAR takes as input a large number of predicates, selectively
chooses predicates to include in the invariant and guarantees
convergence to an inductive invariant using a number of
rounds that is linear in the number of predicates.

Adapting SORCAR to our setting is non-trivial as SOR-
CAR leaves open many design decisions when it comes to
solving the safe instruction set problem. First, setting up
a self-product transition system to invoke SORCAR on so
that it solves the safe instruction set problem precisely is
nontrivial (see §6.2). We also need to specify/generate the
positive/negative samples to bootstrap the learning algorithm
(see §4) and we need to find mechanisms to recover from
failure when an invariant is not found (see §5.5).

Beyond the above, our main conceptual contribution
(also not covered in the SORCAR work as it is domain agnos-
tic) is to define an appropriate universe of predicates through
which to express inductive invariants H. Choosing too large
a universe would make the analysis intractable or require
significant designer intervention (e.g., to provide annotation-
s/analysis constraints). Choosing too few predicates would

⟨H⟩ ::= ⟨p⟩ ∧ ⟨H⟩
| ⟨empty⟩

⟨p⟩ ::= Eq (⟨state element⟩) ; Equality constraint
| Impl (⟨state element⟩, ⟨condition⟩)

⟨state element⟩ ::= s ; State-element in D

⟨condition⟩ ::= C : P(V) → { true, false }

Figure 2: DSL for synthesis of H. C is a boolean conditional over
a subset of V. P(V) is the power set of V.

lead to invariants not being expressible for given designs. In
§5.1, we describe an invariant grammar that is sufficiently
rich to enable analysis of several recent microarchitectures
(e.g., the pipelined RISC-V RocketChip [68]). We then
describe in §5.3 an algorithm that makes finding invariants in
said grammar tractable without additional expert annotation
burden. Putting it all together, our whole analysis run on
the RISC-V RocketChip required only 8 annotations and
was able to generate an invariant in 10 hours.
Tolerating unsafe instructions. Proving that a set of
instructions is safe using an invariant H has further benefits.
In particular, we can allow unsafe instructions to execute in
states satisfying H provided that results in states that remain
in H (we cannot allow unsafe instructions in other states,
of course). Hence, finding a larger semantic invariant (i.e., a
‘minimal’ invariant made up of fewer predicates as discussed
before) is also a useful heuristic for admitting more safe
compositions of safe/unsafe instructions. We discuss how to
obtain such minimal invariants in §5.4.

5.1. Language for H

We use the DSL shown in Figure 2 to learn and express
the invariant. The hypothesis space of this DSL is tailored
to be able to express inductive safety invariants for designs
we expect to encounter in practice.

In this DSL, the Eq(v) predicate expresses the equality
between the L and R versions of a variable v , i.e., vL = vR.
This is similar to secrecy assumptions in prior work [69].
With this predicate, we say v is constrained to be equal
in the L and R executions. Intuitively, this means that v
can only store non-secret data, i.e., data whose value is
independent of Dsecret.

Beyond Eq(v), we include a higher-level predicate
Impl(v, vs) to express more complex relationships between
state variables in modern microarchitectures. Impl(v, vs)
allows for a variable v to conditionally hold unconstrained
(not equal) values, i.e., secret values, when certain condi-
tions are true. For example, the values read by an instruction
from a register file are allowed to be secret if the instruction
currently executing in the pipeline is not an unsafe instruc-
tion. More concretely, the Impl(v, vs) predicate adds the
constraint: vl ̸= vr =⇒ C(vs) where, C is a condition
on state element(s), C : P(V) → { true, false }, where
P(V) is the power set of V.

PEq

P
+

all

mine-predicates

Hcand

Hind

construct-H

P
+

all

select-relevant-predicates

Y

Hind-min

Predicate Discovery (§5.3)

Inv. Minimization (§5.4)

Positive Exs. refine-positive-example

P
+

Eq

Negative/Implication Exs.

check-ind-safe?
Negative /

Implication Ex.
N

Y

Hcand check-ind-safe?
Negative /

Implication Ex.
N

FailFail

Update Set

j

 k

l

Figure 3: Workflow diagram showing learning of the inductive
invariant H. construct-H is a procedure that generates an
invariant Hcand by taking a conjunction over P+

all.

Deciding what Impl predicates to include in an invariant
H is more difficult than choosing which Eq predicates
to include. Specifically, Impl implies a predicate space of
O(2|V|), times the complexity of choosing an appropriate C
which is exponential in |vs|. Eq implies a predicate space
of O(|V|). To address this, §5.3 describes an algorithm
for efficiently selecting a small number of useful Impl
predicates to consider during invariant synthesis.

Finally, following SORCAR/Houdini, we permit con-
junctions of individual predicates (Eq and Impl). Conjunc-
tions are sufficient to represent safety invariants for a large
class of problems in practice [70], [71], [72] (including the
microarchitectures we studied) and also admit an efficient
analysis.

5.2. Learning H

With the invariant DSL from the previous section, we
now describe a high-level overview of our learning algo-
rithm, shown pictorially in Figure 3. We define a func-
tion check-ind-safe? that takes a candidate invariant,
Hcand and outputs either a counterexample (a negative/im-
plication example) or successfully proves that the candi-
date invariant is safe/inductive and outputs Hcand as the
inductive invariant Hind. Internally, check-ind-safe?
performs a safety (Equation 1) and inductivity (Equation 2)
check through an SMT query.4

All the examples (positive, negative, and implication
examples) shown in the figure are seeded from the bounded

4. As discussed in §5, we check this property for the most generic
(symbolic) state admitted by Hcand. The checks are decidable as we only
use quantifier-free bit-vector theories from SMT.

analysis (§4). Initially, the set of implication examples is
empty. The algorithm then proceeds as follows:

Step 1. To prove safety of instructions, the invariant
should admit all the positive examples. Initially, we enu-
merate the set of predicates of type Eq, PEq. However,
we’re only interested in a subset of PEq that actually hold
on the positive examples. Therefore, using the procedure
refine-positive-example and the set of all positive
examples, we filter PEq to obtain the set of predicates, P+

Eq,
that are satisfied by all positive examples.5 The predicate
discovery algorithm takes this set P+

Eq as the initial set of

all predicates P̂+
all.

Step 2. As the set of predicates, P̂+
all = P+

Eq, is usually
insufficient to express an invariant for real-world designs,
we need to augment it with a set of Impl predicates. But,
we cannot enumerate the set of predicates PImpl as it is
exponential in size. So, we develop a predicate discovery
algorithm to find a subset of Impl predicates that are suffi-
cient to derive an inductive invariant.

Predicate discovery takes as input an initial set of all
predicates P̂+

all = P+
Eq and outputs Hind of the form

Hind =
∧

p p ∈ P+
all, where P+

all is the set of all predicates
needed to derive the invariant. The predicate discovery
procedure invokes the mine-predicates sub-procedure
that uses information within a negative or an implication
example, ex, and either (i) outputs a set of Impl-type
predicates that is consistent with the positive examples
and eliminates ex, or (ii) fails if no such predicate exists.
Notice that predicate discovery only explores H by adding
predicates, and therefore cannot find an H that requires a
certain p to be dropped. To overcome this, on failure, we
first run SORCAR (which can drop predicates) with the set of
predicates discovered so far to check if H exists within this
set. The soundness of this step follows from SORCAR . We
discuss the other causes and remediations for failure in §5.5
and present the details of predicate discovery next in §5.3.

Step 3. Lastly, we have an optional step to minimize the
number of predicates in the inductive invariant Hind. The
invariant minimization step takes as input the discovered set
of predicates that are consistent with the positive examples
P+
all and constructs an invariant smaller than Hind. The

procedure uses select-relevant-predicates that
picks a subset of predicates from P+

all based on the negative
and implication examples seen so far and outputs a can-
didate invariant Hcand. The candidate invariant is checked
for safety and inductivity. Failing produces a new negative
(safety) or implication (inductivity) counterexample, respec-
tively. If the check passes then the candidate invariant Hcand

is our new minimized invariant Hind−min. We formulate the
invariant minimization problem in §5.4.

5. In the following, we will use superscript + when discussing pred-
icates, e.g., P+, to denote sets of predicates that satisfy the positives
examples.

5.3. Predicate Discovery

In practice, it may not be possible to enumerate all
predicates. Consider the predicates of type Impl where the
first argument is any state element and the second argument
is a condition over state element(s) in the design. As the
conditional expression can be arbitrarily complex, listing out
all predicates in PImpl is intractable.

Starting from the set of all predicates containing only
Eq-type predicates that hold on positive examples, i.e.,
P̂+
all = P+

Eq, the predicate discovery algorithm adds a small,

but useful subset of Impl predicates to P̂+
all, forming P+

all,
such that the resulting set is sufficiently expressive to learn
an invariant for D.

Predicate discovery is based on the following two key
observations:

First, that the unsafety in a design is due to unsafe in-
structions interacting with unconstrained (secret) data when
that data is stored in specific state elements. In other words:
we can represent those unsafe states by formulating Impl
constraints that forbid secrets from being present in specific
state elements when opcode bits (or functions of opcode
bits) of unsafe instructions are present in potentially other
state elements.

Second, that both the state elements containing secret
data and those encoding instruction opcode information
have signatures that make it possible to identify secret- and
opcode-holding state element candidates in our negative and
implication examples. Specifically: state elements that do
not satisfy Eq constraints potentially contain secret data;
whereas state elements that satisfy Eq constraints potentially
contain opcode-related information.

With the above in mind, we proceed as follows. In each
example, we partition the state elements into two sets:

i. Vs : the set of state elements that, for the current exam-
ple, hold different values on the L and R executions.

ii. Vp : the set of state elements that, for the current exam-
ple, hold the same values on the L and R executions.

We build a set of Impl predicates, i.e., a subset of PImpl,
by taking the cartesian product of (i) and (ii). That is, we
allow (i) only when the assignments in (ii) do not equal
specific values that are equal in both the L and R executions.
Our thesis is that if a given state element holds the same
value in both the L and R executions, it is an opcode-
derived constant. Thus, this construction captures potential
interactions between secret data and opcode-related data.

More detailed pseudocode for predicate discovery is
given in algorithm 2. The top-level algorithm starts from
the universe of predicates P̂+

all = P+
Eq consistent with

positive examples. In every round, new predicates consistent
with positive examples are added until the predicates in
what becomes P+

all are sufficient to prove inductive safety.
Each round considers the largest conjunctive invariant

Hcand = ∧P+
all (line 3). On a counterexample, cex, the

procedure calls mine-predicates to find one or more
predicates to add to P+

all that can eliminate the cex (line 4).

To generate this set of predicates, mine-predicates
tracks variables of types (i) (line 15) and (ii) (line 17) as
described above. Next, the potential set of predicates, P′

Impl,
is constructed by taking a cartesian product of the above two
cases (line 20). Lastly, we retain only predicates from P′

Impl

that hold on positive examples (line 22) to form P+
Impl:

the set of predicates that hold on positive examples and
are useful in eliminating cex. The final set of useful Impl
predicates is the union over useful predicates discovered on
each cex, i.e.,

⋃
cex P

+
Impl. Note that the invariant formed by

the conjunction over the discovered set of predicates through
this procedure is maximal (i.e., contains both the initial and
discovered predicates), safe, and inductive.

Algorithm 2: Predicate Discovery.

Input : P̂+
all : Initial set of predicates, i.e., P+

Eq .
Output: P+

all : The augmented set of all predicates
sufficient to derive an invariant for D.

1 P+
all = P̂+

all;
2 while true do
3 Hcand = ∧i pi ∈ P+

all;
4 cex = check-ind-safe?(Hcand);
5 if cex then
6 P+

all = P+
all∪ mine-predicates(cex);

7 else
8 return P+

all;
9 end

10 end
11 def mine-predicates (cex) → P+

Impl:
12 Vs = Vp = ∅;

// ∀ state elements in cex
13 for s ∈ cex do
14 if cex[sL] = cex[sR] then

// (ii) s: non-secret constant
15 Vp = Vp ∪ (s, cex[sL]);
16 else

// (i) s: secret
17 Vs = Vs ∪ s;
18 end
19 end
20 P

′
Impl = {Impl(v, s ̸= c) : (v, (s, c)) ∈ (Vs × Vp)};

21 P+
Impl = refine-positive-example(P

′
Impl);

22 return P+
Impl;

23 end

5.4. Invariant Minimization

We now formulate the problem of minimizing the invari-
ant and develop several approaches for doing so. A smaller
invariant is desirable for three reasons. First, a smaller in-
variant implies a larger state space allowed by the invariant.
This means that the invariant allows a larger number of
states, i.e., including states in which even the execution of
an unsafe instruction may also be safe. Second, it helps
experts analyze and understand the root cause of unsafety
in their designs, as we show in §7.4. This is harder to do
if the invariant is large (contains a large # of predicates)

with many irrelevant predicates. Lastly, a smaller invariant
results in faster checks during verification.

Recall that the minimization procedure starts from the
set of predicates P+

all that is output by the predicate discov-
ery algorithm (§5.3). As predicate discovery only stops once
it has found an inductive invariant, we know that invariant H
exists in the set of predicates P+

all. Therefore, the following
minimization strategy cannot fail to produce an invariant.
At worst it will produce an invariant no smaller than the
existing Hind from predicate discovery.

Definition 5.1. Hitting-set Formulation: Observe that (ide-
ally) we only need one p ∈ P+

all to be consistent with a
negative/implication example, exi. We formulate the prob-
lem of picking Pcand ⊆ P+

all consistent with each exam-
ple exi as a minimum-hitting set problem [73]: Record
for every exi the set of predicates Pi ⊆ P+

all that elimi-
nates exi. Find min |Pcand| s.t. Pcand “hits” every Pi, i.e.,
∀i(Pcand

⋂
Pi) ̸= ∅.

Minimization using the greedy algorithm. We use a well
known greedy approximation [74] to find a solution to the
minimum hitting set formulation from above. In short, the
procedure selects p ∈ P+

all greedily such that in each step the
selected p eliminates the largest number of examples that are
not yet eliminated until there are no more examples to elim-
inate. This returns an Hcand in polynomial time. Although
the above described greedy algorithm runs in polynomial
time, it may take an exponential number of examples to
find the invariant. Therefore, we also implement a softer
version, as described in SORCAR , where we force a new
predicate to be added to the invariant on every example. We
call the former greedy-CONJUNCT and the latter greedy-
frozen. We use both minimization approaches: first we try
greedy-CONJUNCT and fallback to greedy-frozen when the
minimization does not find an invariant in a reasonable
amount of time. Compared to predicate discovery, the invari-
ant synthesized by the greedy scheme can be much smaller.
For example, on Rocketchip the invariant synthesized by
greedy-frozen only contained 851 predicates vs. the original
invariant from predicate discovery which contained 3,232
predicates.

5.5. Failure and Recovery

The above described learning algorithm may terminate
and fail to produce an inductive safety invariant for one of
several reasons:
Poisoned positive examples. It is possible that one of
the examples assumed to positive is actually a state that
will eventually result in a safety violation when run for
some steps K ′ > K . Therefore, by considering an unsafe
intermediate state as safe, we may have inadvertently pruned
out predicates from P+

Eq that are essential in synthesizing a
safe and inductive H. To recover from this failure, one can
imagine a human-in-the-loop who can analyze the failure,
attribute it to a certain unsafe instruction being misclassified
as a safe instruction, and re-run synthesis by moving the
corresponding positive examples to the negative examples.

Another simpler, less involved solution is to re-run the
bounded analysis with a bound K ′ > K to trigger the
unsafe behavior in the bounded analysis phase and then
synthesize the invariant using the cleaned-up set of positive
and negative examples.
DSL is not expressive enough. In general, we cannot
guarantee that our DSL is complete and sufficient to express
invariants for designs that we have not evaluated on. Funda-
mentally, there is a trade-off between the expressiveness of
the hypothesis space and the tractability of synthesis. That
said, Impl was inspired by and captures common design
patterns seen in designs today. For example, how each state
element is associated with a specific in-flight instruction in
a given cycle. Thus, we believe it will be useful in verifying
larger designs and show in §7 that it is sufficiently powerful
to express invariants for the open-source designs that we
have evaluated CONJUNCT on so far. We note that our
analysis may also fail if the root cause of the unsafety is
due to reasons other than executing unsafe instructions, e.g.,
if the optimization acts on an instruction’s execution in an
operand-independent way.

6. Proof Sketches
In this section we will provide proof sketches for CON-

JUNCT. First, we will refine Def. 3.6 to define sets of safe
instructions useful in practice, e.g., for constant-time pro-
grams. Next, we will show that the sets of safe instructions
produced by CONJUNCT satisfy the constant-time safe sets
definition (in §6.1). Finally, we show that the invariant Hind

synthesized by CONJUNCT is precise (in §6.2).

6.1. CONJUNCT Proof of Soundness

First, we will instantiate Def. 3.6 for the constant-time
programming setting. Recall, Def. 3.6 is parameterized by:
(a) R: the set of secret sources, and (b) O: the set of
attacker observable variables. We refer to this definition as
SISP(R,O). The choices of (a) and (b) influence what set
of instructions are safe and, as such, are context-dependent.
Not all combinations of (a) and (b) yield meaningful results.

In this work, we’re interested in the set of safe instruc-
tions which can be composed together to form constant-time
programs. This means R should be architectural sources
of operand data—i.e., the architectural register file (ARF)
and/or data memory. W.l.o.g., as we consider RISC-like
ISAs where all data memory is written to the ARF before
being used, we set R to be equal to the ARF. With that in
mind, we can define the constant-time safe instruction set
problem:

Definition 6.1. Constant-Time Safe Instruction Set
Problem: The constant-time safe instruction set problem
(CT-SISP(O)) is an instance of SISP where the set of secret
sources, R, is set of be the architectural register file. That
is, CT-SISP(O) := SISP(R = ARF, O).6

6. Note, we continue to leave O to be parametric to be able to model
different attacker capabilities, although it will generally be set to signals
that correspond to an instruction’s retirement time.

It should be clear that by the definition of SISP that
CT-SISP(O) – for an appropriate choice of O – defines Σ+

for D which are safe for use in constant-time programs.
That is, the first access of a given secret must be from
the ARF and the definition considers all compositions of
instructions and starting states from the point that the secret
is initially accessed. Let us call the final safe set output by
CONJUNCT Σ̂+. Appendix A provides a proof that Σ̂+ is
valid in CT-SISP(O) for the specified O.

6.2. Proof-Sketch that Hind is Precise

In this section, we show that the invariant synthesized
by CONJUNCT is precise. We note that invariants formed
by SORCAR /Houdini are naturally precise, but precision
isn’t discussed in those works. Below, we give an argument
for why they are precise, and reconcile differences between
their analysis and ours to show that the precision arguments
governing their analysis applies to ours as well.

As we’re interested in a relational invariant for C
(Def. 3.2), we define a product machine that operates over
a pair of states.

Definition 6.2. Product machine Cp: Construct a product
machine for C, named Cp = (Sp, (sinit, sinit), R,Σ, O, 7→),
where all symbols have their usual notations, but redefined
for the product setting: Sp is the set formed by taking a
cartesian self-product S × S, 7→a : S × S → S × S maps
the pair of states (s0, s

′
0) 7→a (s1, s

′
1) if (s0 ⇝a s1) and

(s ′0 ⇝
a s ′1).

Let x = a0, a1, . . . , an denote a sequence of inputs over
Σ+, the set of safe instructions.

Definition 6.3. Precision: We say H is precise if for each
state spi = (sL

i , s
R
i) appearing in any trace generated by a

x on Cp starting from states (sL, sR) where sL ≈sec sR, H
allows spi , i.e., spi |= H.

We define Cp to have a non-deterministic ϵ transition
from the initial state (sinit, sinit) to all states (sL, sR) where
sL ≈sec sR. If an inductive invariant H for this Cp exists
within our predicate language, SORCAR will find said H.
This H is precise: the state (sinit, sinit) is safe and allowed
by H, and furthermore, by the definition of an inductive
invariant, H should allow all safe states reachable through
successive applications of 7→a ∀a ∈ Σ+, as otherwise it
would violate the inductive property of H.

CONJUNCT constructs a precise invariant. Recall
that we start the analysis described in §4 from a sym-
bolic start state, S0, that captures all states (sL, sR) where
sL ≈sec sR. Therefore, every positive example collected
from the bounded analysis has the state S0 as the prefix.
Allowing S0 into H is equivalent to allowing all pairs of
states (sL, sR) where sL ≈sec sR into H. As we allow all
valid start states into H, it follows from the above argument
that the inductive invariant synthesized by CONJUNCT is
also precise. Hence, as long as the set of positive examples
is complete, i.e., covers all safe instructions as ∈ Σ+, the
synthesized invariant is precise.

Caveat / Source of Imprecision. Since the bounded anal-
ysis in §4 may be imprecise when attributing blame to an
instruction (§4.1.1) the resulting subset of safe instructions,
Σ̂+, may be non-maximal, i.e., Σ̂+ ⊆ Σ+. As a result, the
derived invariant may also be imprecise in the same way,
e.g., if Σ̂+ excluded a safe instruction as ∈ Σ+ due to the
above mentioned imprecision then H will not allow any
states in the execution of as. Or in other words, the states
in the execution of as are false positives. We leave better
attribution of blame to future work.

Lastly, we note that in our evaluations, we never en-
counter the case where the composition of potentially safe
instructions results in unsafe behavior. Therefore, the anal-
ysis does not suffer from a loss of precision described
in §4.1.1, and so Σ̂+ = Σ+, and the derived invariant is
indeed precise.

7. Evaluation

We now evaluate an implementation of CONJUNCT on
several RISC-V microarchitectures, reporting on analysis
time, annotation effort and statistics related to the con-
structed invariants/per-design safe instruction sets. The end
of the section provides two case studies. First, we show
how the minimized invariant produced by CONJUNCT can
be used to localize where in a design an unsafe optimization
is implemented. Second, we show how CONJUNCT can be
used to co-design safe but performant microarchitecture.

7.1. Implementation and Methodology

Framework. We implement CONJUNCT in Python and
Racket. CONJUNCT is currently implemented in about ∼
6000 lines of Python and is responsible for parsing the
design in Verilog, converting Verilog to our internal DSL
(to symbolically evaluate in Racket), performing optimiza-
tions, computing the product program, generating test har-
nesses, and instrumenting the code. Additionally, we imple-
ment all of our symbolic analysis and invariant learning in
Rosette [22], a DSL to build solver-aided tools in Racket, in
about ∼ 6000 lines of Racket. CONJUNCT uses specifica-
tions from the official RISC-V repository [75] for instruction
encodings. Annotations are described in a separate file.

Experimental Setup. We ran all our evaluations on a
standard desktop machine equipped with 16GB of memory
and an Intel i5-9500 with 6 cores running Ubuntu 18.04. We
use CVC5 [76] as the SMT solver in all our experiments. We
obtained the open-source designs from their official reposi-
tories and processed them through yosys [77], e.g., flattening
modules, performing basic optimizations etc., before pairing
them with CONJUNCT.

Evaluated pipelines. We evaluate CONJUNCT on three
pipelines (summarized in Table 2) of varying complexity.
We do not currently analyze the data cache, since non-
memory instructions do not interact with the data cache,
but this choice was not fundamental.

1 2 3 4 5 6 7 8 9 10 11 12

101

103

Lo
g

M
ea

n
tim

e
(in

 s)

1 2 3 4 5 6 7 8 9 10 11 12

0.5

1.0

1.5

2.0

M
ea

n
Pe

ak
 M

em
or

y
Us

ag
e

(in
 G

B)

of Steps

VScale-time
VScale-mem

Ibex-time
Ibex-mem

Rocketchip-time
Rocketchip-mem

Figure 4: Performance of Bounded Analysis (§4). Steps correspond
to clock cycles.

All three pipelines (V-Scale [78], Ibex [79], Rock-
etChip [68]) are single-issue in-order cores, with 2, 3 and 5
pipeline stages, respectively. For Ibex, we evaluate the small
configuration; for RocketChip the DefaultRV32Config
configuration. We note, the small Ibex configuration is the
default and only formally-verified configuration. We modi-
fied all three cores to only use uncompressed instructions.
V-Scale and Ibex use the RV32IMC ISA subset; RocketChip
uses the RV32 ISA subset.

7.2. Quantitative Evaluation

Pipeline # Annotations
Stages # Regs # Wires O S R P A

VScale 3 1,080 11,186 1 1 1 0 0
Ibex 2 2,013 40,306 1 2 2 1 1
RocketChip 5 2,091 54,461 1 2 1 4 0

TABLE 2: Complexity of designs under analysis. The right half
of the table shows the number of annotations (by type) needed
to begin the CONJUNCT analysis: (O) Setting the observation
variable, (S) Setting the instruction source, Marking (R) the register
file and (P) program counter register; finally: (A) any additional
annotations. # Regs denotes the number of Verilog reg bits assigned
inside clocked ‘always’ blocks. We note, this may under count the
true number of flip-flops/registers, as some registers can manifest
due to code outside of clocked blocks.

Predicate Discovery Greedy
Eq Impl Total Time Eq Impl Total Time

VScale 161 995 1,156 10m 60 8 68 +25m
Ibex 812 0 812 4m 84 0 84 +44h
RocketChip 326 2,906 3,232 7h 235 616 851 +3h

TABLE 3: Evaluation of Invariant Learning. Eq, Impl denote the
number of each type of predicate needed to construct the invariant
(of size Eq + Impl). Time taken by greedy is in addition to the
time taken for predicate discovery.

Performance of CONJUNCT. We now evaluate CON-
JUNCT in terms of analysis time and memory usage, as
a function of the design complexity. Figure 4 shows the
scalability of our bounded analysis for each design. We run
the bounded analysis on each of the three designs for an
increasing number of cycles. Figure 4 (left) plots the log of

mean execution time vs. a bound on analysis steps (cycles).
The execution time of the analysis scales exponentially with
the number of steps, with more complex designs starting
off with a higher time. All executions were set to have a
maximum timeout of four hours.

The number of bounded analysis steps needed to derive
the invariant for the designs we evaluated was 5, 3, and
6 steps, respectively. This took on the order of minutes to
run for all designs. For illustrative purposes, we show how
runtime scales beyond this: The symbolic execution was able
to explore up to steps 9, 8, and 12 for VScale, Ibex and
RocketChip, respectively, before the timeout was reached.

It is interesting to note that by step 9, the analysis
time of the simpler VScale design actually exceeds that
of the more complex RocketChip. At each step of the
bounded analysis, symbolic expressions are generated from
values and expressions stored in the state elements from the
previous step. Hence, as the number of steps of the analysis
grows, these expressions also grow in complexity making
them more difficult to solve. The rate of growth of this
expression complexity is not just a function of the number
of state elements in the design, but also of how the state
elements are connected and used.

Figure 4 (right) shows peak memory as a function of
analysis depth. The memory used by the analysis scales
linearly with the number of steps on all three designs, with
the more complex designs consuming more memory. In all
cases, the memory usage was moderate and within what’s
typically available on today’s desktop machines (< 3GB).

Annotation Effort and Complexity. All three designs
required minimal annotations (< 9) for the full CONJUNCT
flow (both the bounded analysis and invariant learning
phases). We show this annotation effort in the right half
of Table 2. All designs require us to annotate the observation
variable (O), instruction source (S), and the register file (R).
In addition, Ibex and RocketChip required us to annotate the
state elements holding the program counter (P) to ensure that
the PC is aligned. Lastly, Ibex required us to add one more
annotation to eliminate an invalid start state in the load-store
unit (LSU) that led to safe instructions in the design being
flagged as unsafe, but through invalid counterexamples.

For the most part, annotation effort is straightforward.
The annotations for (O), (S), (R), and (P), involve iden-
tifying registers corresponding to the key structures found
in all hardware designs. The only annotation that needed
significant effort was the 1 (A) annotation for Ibex. The (A)
annotation required debugging and understanding the false-
positive counterexamples so as to identify the root cause
that led to the unreachable initial state. After identifying the
root cause, we had to carefully constrain the initial state
to eliminate the unreachable states without removing any
reachable states. This entire process took less than 1 day
for a graduate student.

Learnt Invariant Statistics. CONJUNCT was able to
synthesize an invariant for all three designs, the statistics
for which are shown in Table 3. For all three designs, we
invoked predicate discovery (§5.3) to generate a set of Impl

predicates necessary to learn an invariant. We show results
for both the invariant synthesized by predicate discovery and
the Greedy predicate minimization strategies (§5.4).

For all designs except Ibex, Impl predicates were nec-
essary to synthesize an invariant. Using predicate discovery,
the invariants of V-Scale, Ibex, and RocketChip have 1,156,
812, and 3,232, predicates respectively. Using the greedy-
CONJUNCT minimization strategy (§5.4), we were able to
significantly reduce the number of predicates per invariant
for V-Scale and Ibex. For RocketChip we failed to derive an
invariant using the greedy-CONJUNCT strategy even after 2
weeks of running. Hence, we fallback to a softer version of
the greedy minimization strategy (described in SORCAR),
greedy-frozen, and force a new predicate to be added to
the invariant in every iteration of learning. This converges
relatively quickly (in a polynomial number of examples) and
generates an invariant with 851 predicates.

7.3. Security Properties / Security Evaluation

Next, we analyze the set of safe and unsafe instruc-
tions as identified by CONJUNCT. Table 4 shows which
instructions are safe in each design. We manually analyzed
each design to understand root causes and validate that the
instructions identified as safe are actually safe. We also
validated our result on Ibex against a related work UPEC-
DIT (§8), and found the two to be in agreement (with one
exception—see below).

On V-Scale, all instructions that we tested, except for
branches, are safe. Branches on V-Scale stall for a cycle if
the branch is taken vs. if the branch is not taken as the next
fetched instruction needs to be flushed and fetched again.
As the conditional to the branch is a secret, an attacker who
can observe the retirement time for the branch can learn if
the secret predicate evaluated to true or false.7

Similarly, branches are unsafe on Ibex for the same
reason. Additionally, branches are unsafe also due to mis-
aligned targets: when the branch target is misaligned, Ibex
needs to perform two fetches from memory instead of
one, thereby taking an additional cycle. Most loads and
stores, with the exception of lb and sb, are unsafe for
the same reason: performing an unaligned load or store
causes the processor to make two aligned requests instead
of one, thereby influencing the load/store’s retire time. As
lb and sb deal with a single byte there is no misalignment.
Therefore these variants of the instructions are safe.8 Recall,
we are not currently modeling cache (§7.1), so there are no
cache-based attacks (§2) to render lb/sb unsafe. Lastly,
Ibex implements div/divu and rem/remu in a non-
constant time way as a division by zero completes in 1 cycle,
while all other divisions take 37 cycles.

7. We note that aside from the above timing disturbances, branches
are generally considered unsafe because they change the the number of
dynamic instructions in the program’s execution. Our analysis does not
consider this fact, but can be easily changed to by adding the PC register
to the set of observation variables.

8. We note that UPEC-DIT does not break instructions down by data
width, and thus finds that loads/stores of all widths are unsafe.

rsL ̸= rsR =⇒ mem ctrl branch ̸= 1

Figure 5: Example of a predicate in the RocketChip invariant. Reg-
ister names have been changed for readability. The LHS specifies a
register that can conditionally hold a secret and the RHS describes
the condition. rs is the input source register to the execute stage
of the pipeline. In this example, rs can hold a secret if the
control signal mem ctrl branch is not set. This is intuitive
as branches are unsafe and acted on in the execute stage.

Lastly, on RocketChip all branch and memory instruc-
tions are unsafe for the same reason as on the other cores.
The multiply and divide instructions turn out to be safe
because in the default configuration they are unrolled for
a minimum of 8 cycles before optimization (and since
no mul/div takes > 8 cycles, these instructions for this
parameterization of RocketChip are safe).

7.4. Case-Study: Analysis of RocketChip Invariant
to Perform Root Cause Analysis

The derived invariants contain a treasure trove of infor-
mation regarding the root cause of unsafety in the design.
However, understanding the invariant is non-trivial as it
contains a large number of predicates, e.g., the invariant
for RocketChip has more than 850 predicates. This creates
a needle in a haystack problem as most predicates do not
point to root causes of unsafety but, rather, are required to
block states that will eventually lead to unsafety. We leave a
more systematic exploration of the invariant to future work,
but report here encouraging best-effort results that show
how the invariant can be helpful in localizing where in the
microarchitecture an unsafe optimization is implemented.

We analyze the RocketChip invariant. To derive useful
information, we focus our attention to the Impl-type predi-
cates exclusively as they provide instruction-specific causal
information in the form of: “state element X cannot hold
secret values when state element Y is associated with a
specific unsafe instruction.” An example of such an Impl-
type predicate found in the RocketChip invariant is shown
in Figure 5. We started by grouping predicates based on the
registers that appear on the LHS of the Impl predicates. By
the semantics of Impl, these registers can conditionally hold
secret data (§5.1). We found that across all (616) Impl-type
predicates, there were only 8 distinct registers that appeared
on the LHS:9

• (A, B, C) 3 registers that make up the rs (register
source) in the Execute stage.

• (D) 1 register that stores data to be written back to
memory.

• (E) 1 register that stores data to be written back to the
register file.

9. The names of registers have been simplified/annotated to ease presen-
tation.

and andi xor xori or ori sll sra srl add addi sub mul mulh mulhu mulhu mulhsu div divu rem remu ecall ebreak

VScale ✓

Ibex ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✕ ✕ ✕ ✕ ✓ ✓

RocketChip ✓

lb lh lw lhu sb sh sw lbu lui slt sltu slti jal jalr beq bge bgeu bge bltu blt bne fence auipc

VScale ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✓ ✓

Ibex ✓ ✕ ✕ ✕ ✓ ✕ ✕ ✕ ✓ ✓ ✓ ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✓ ✓

RocketChip ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✓ ✓ ✓ ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✓ ✓

TABLE 4: Table showing the set of safe and unsafe instructions on three open-source designs: VScale, Ibex, and RocketChip. ✓ represents
that an instruction is safe on the microarchitecture while a ✕ denotes that an instruction is unsafe.

• (F, G, H) 3 registers related to the divide unit: remain-
der, quotient, and a state register storing the current
operation’s running cycle count.

We now discuss when Impl predicates indicate that these
registers are allowed to hold secret data.

(A, B, C) cannot hold secret data when an un-
safe instruction (Table 4) is executing. More specifi-
cally, (A) cannot hold secret data when any of the
control signals corresponding to an unsafe instruction-
type is set (mem ctrl {branch, div, fp, jalr,
mem}), and (B, C) cannot hold secret data when the exe-
cuting instruction is a load or a store. This information is
intuitive and useful: unsafe optimizations in RocketChip are
implemented in the execute stage and the rs register is an
input to the execute stage.

(D) cannot hold a secret when a CSR/system instruction-
type is set (mem ctrl csr) or when the executing in-
struction is a load or a store.

(E) is not allowed to hold secret data when control
signals related to CSR (control status register) writes are
set. This was surprising to us as we did not consider system
instructions related to the manipulation of the CSR in our
analysis. That said, most system instructions that manipulate
the CSR are unsafe. To derive an invariant, we need to
eliminate all sources of unsafety, including the flow of
secrets into the CSRs or any other instruction not included
in the analysis. This highlights the power of predicate dis-
covery (§5.3) in automatically finding Impl that are crucial
to blocking out unsafety without the need for expert analysis
or annotations.

Finally, why (F, G, H) cannot (conditionally) hold secret
data requires more explanation. Recall, our earlier results
reported that the division instructions in RocketChip are
safe (Table 4). In that case, why would there be Impl
constraints on (F, G, H), which are registers that are part
of the division unit? We found that this is because the
divide unit in RocketChip is not truly constant-time, but
rather just constant time for the ISA subset (RV32) that
we evaluate. CONJUNCT synthesizes Impl constraints to
properly initialize the divide unit and reflect that for this
ISA subset, it is safe.

In more detail: By default, RocketChip’s divide unit
always unrolls divisions for 8 cycles. Therefore, any division
that takes less than or equal to 8 cycles will always take
8 cycles. As we are evaluating RocketChip parameterized
to operate on RV32, division on any two 32-bit values
can be completed within 8 cycles, and hence are constant-

time and safe. The invariant needs to capture this fact.
Because the three values, count, divisor, and remainder,
are unconstrained and can take any value during invariant
learning, including unreachable values that imply a > 8
cycle operation, additional predicates are required on these
variables to disallow variable-timing behavior of the divide
unit. To prevent the secret values from affecting the retire
register, the invariant disallows the above registers from
holding secrets when the state of the division unit is ei-
ther s div (start of division) or s div ready (end of
division).

In addition to all of the above predicates, there are var-
ious other predicates that prohibit exceptions under certain
conditions.

7.5. Case-Study: Computation Reuse

Lastly, we show how CONJUNCT can help microarchi-
tects evaluate the security impacts of their proposed opti-
mizations (echoing §2). For this case study, we implement
computation reuse, an advanced microarchitectural opti-
mization that memoizes the result of an expensive instruction
in case it is called with the same operands twice [26].
This is an interesting optimization to study as it is typically
implemented as a part of the pipeline’s instruction decode
(ID) logic [16], [26]. Hence, it illustrates the need to audit
the entire pipeline rather than just the execution units.

Sodani et al. [26] describes two different schemes to im-
plement computation reuse. Scheme (i) looks up the mem-
oization (reuse) table by instruction opcode and operand
value. Scheme (ii) looks up the reuse table by instruction
opcode and operand register id. Both schemes update the
table (add/update a table entry) when an instruction executes
that is a candidate for memoization. Since it’s possible for
Scheme (ii) to have false hits, it needs to be flushed when
an instruction writes to a register whose id is present in the
table.

Interestingly, Sodani et al. [26] find that both of the
above schemes improve performance. Even more interest-
ingly, as noted by Vicarte et al. [16], they (intuitively) have
different security implications: Scheme (i) can create new
unsafe instructions because it skips instruction execution
in an operand value-dependent way. Scheme (ii), on the
other hand, cannot: it skips execution only as a function
of register id (which is usually considered non-secret, e.g.,
in the constant-time programming setting).

We implemented the above two reuse schemes in
Ibex [79], which consists of instruction fetch (IF) and in-

struction decode/execute (ID/EX) stages. On this pipeline,
most instructions complete the ID/EX stage in 1 cycle.
Several others require multiple cycles: (a) mul / mulh take
3/4 cycles to complete, and (b) div / rem take either 1 cycle
(when there is a divide by 0) or 37 cycles to complete.

We implement both reuse schemes as a part of the ID/EX
stage (conceptually as a part of the ID stage and before the
EX stage), optimizing the above multi-cycle instructions. In
both schemes, reuse table hits immediately return and for-
ward the result (in a single cycle). The instruction executes
normally, otherwise. For our proof-of-concept implementa-
tion, we set the reuse table to contain only a single entry,
and hence, both schemes only memoize the latest mul /
div / rem computation. We tested our implementations
for both correctness (did not produce incorrect results) and
“performance-functionality” (i.e., the optimization saves cy-
cles as expected).

We evaluated CONJUNCT on both schemes. For Scheme
(i), CONJUNCT correctly identifies during the bounded anal-
ysis (§4) that the mul-family of instructions (which were
safe without the optimization added) are now unsafe. It also
identifies that div/rem instructions are unsafe, although
these instructions were already unsafe on Ibex. Finally,
CONJUNCT correctly identifies that Scheme (i) doesn’t
render any other safe instructions unsafe. For Scheme (ii),
mul instructions continue to remain safe, div/rem remain
unsafe, and other instructions are not affected. This also
matches expectations. To complete the evaluation, we ran
invariant learning (§5.2) to derive an invariant that proves
unbounded safety/unsafety of all instructions on both de-
signs. This showcases CONJUNCT in action: CONJUNCT is
capable of advising microarchitects on when novel perfor-
mance optimizations create novel security issues in a design.

8. Related Work

We compare to related works on three axes. (R1):
whether the analysis is sound wrt. the safety property, i.e.,
it does not miss any safety violations (have false negatives).
(R2): whether the analysis is precise, i.e., does not flag
states/instructions that are safe to execute as unsafe (have
false positives). Finally, (R3): the proposal’s degree of au-
tomation, i.e., whether it requires heavyweight annotations,
or require a human-in-the-loop. CONJUNCT achieves all
three goals. Invariant learning enables R1 (§5) and R2
(§6.2). Predicate discovery (§5.3) and our approach using
synthesis (§4-§5) empirically enables analysis with very
few expert guidance/annotations (§7). However, we do ac-
knowledge that CONJUNCT may require more annotations
to achieve precision for larger, more complex designs.

The closest work to ours is UPEC-DIT [80], which
is a nascent proposal for identifying which instructions
are safe/unsafe in a microarchitecture. UPEC-DIT can be
viewed as a simplified version of our bounded analysis §4: it
does not satisfy (R1), as their analysis is bounded and hence
not sound (although this restriction is lifted in a follow-
up work that is concurrent to ours [81]). It also does not
satisfy (R3), as it requires a human-in-the-loop to analyze

counterexamples and add annotations during each iteration
of the analysis. Similarly, prior work such as Iodine [82]
(and its follow-on Xenon [69]) do not satisfy (R2): it is
capable of discerning whether an entire design is “constant
time”, but not with respect to different instructions (and
would therefore conclude that every instruction is unsafe in
our setting). Iodine also does not satisfy (R3) as it requires
a human-in-the-loop to identify secrecy assumptions.

Finally, concurrent work by Wang et al. addresses the
problem of verifying leakage contracts [83] using invariant
synthesis. This work is closely related to CONJUNCT. For
example, the contracts I, B, M, O (on Ibex) corresponds to
CONJUNCT finding branch, memory, and mul/div/rem in-
structions unsafe. That said, their work is solving a different
(while adjacent) problem to ours. Their work requires de-
signers to write microarchitecture-specific leakage contracts
in Verilog. By contrast, CONJUNCT starts with no apriori
knowledge of any contracts, i.e., what instructions might
leak, and instead tries to deduce this information. In their
terminology: our Phase 1 (§4) can be viewed as inferring
likely contracts, i.e., the set of safe/unsafe instructions. Our
Phase 2 (§5.2) then proves that the inferred likely contracts
are actual contracts. This, when the problem at hand is
determining the safe instruction set (Def. 3.6), requires sig-
nificantly lower annotation burden. Lastly, their work does
not scale to instructions that need many cycles to complete,
e.g., like div which requires 37 cycles, while CONJUNCT
has no such limitations.

There is rich literature in using symbolic execution [84],
[85], [86], [87], fuzzing [88], [89], [90], [91], and a com-
bination of these techniques to find bugs in both hardware
and software. While these techniques are useful in finding
bugs in practice, they cannot perform verification to prove
absence of bugs or derive specifications, which is the subject
of this work. In theory, CONJUNCT can use these advances
in bug-finding techniques, with different soundness and
scalability trade-offs in the bounded-analysis phase. This is
an interesting future direction for research.

9. Conclusion

This work presented CONJUNCT, a proof-of-concept
framework/automated analysis that (given an input microar-
chitecture and low designer annotation burden) determines
which instructions are safe in unbounded composition. The
key finding is that with a modest family of predicates it is
possible to synthesize inductive relational invariants for to-
day’s microarchitectures that are capable of discerning safe
from unsafe instructions. We view CONJUNCT as a starting
point. Longer-term, we see CONJUNCT-like analyses being
used to synthesize security-centric contracts for other se-
cure programming patterns (such as writing programs with
balanced branches and spatially isolating computation).

Acknowledgments. We thank the anonymous reviewers for
their valuable feedback. This research was partially funded
by NSF grants 1954521, 1942888 and 2154183, as well as
by Intel through the RARE center.

References

[1] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A Survey of Microar-
chitectural Timing Attacks and Countermeasures on Contemporary
Hardware,” IACR’16.

[2] “Arm Architecture Registers Armv8, for Armv8-A archi-
tecture profile,” https://developer.arm.com/docs/ddi0595/latest/
aarch32-system-registers/cpsr.

[3] “Data Operand Independent Timing Instruction Set Architecture
(ISA) Guidance,” https://www.intel.com/content/www/us/
en/developer/articles/technical/software-security-guidance/
best-practices/data-operand-independent-timing-isa-guidance.html.

[4] Github, “Zkt ”Constant Time” Instruction List,” 2023, https://github.
com/rvkrypto/riscv-zkt-list.

[5] P. C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems,” in CRYPTO’96.

[6] J. Yu, L. Hsiung, M. E. Hajj, and C. W. Fletcher, “Data Oblivious
ISA Extensions for Side Channel-Resistant and High Performance
Computing,” in NDSS’19.

[7] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W.
Fletcher, “Speculative Taint Tracking (STT): A Comprehensive Pro-
tection for Speculatively Accessed Data,” in MICRO’19.

[8] S. Cauligi, G. Soeller, B. Johannesmeyer, F. Brown, R. S. Wahby,
J. Renner, B. Grégoire, G. Barthe, R. Jhala, and D. Stefan, “FaCT:
A DSL for Timing-Sensitive Computation,” in PLDI’19.

[9] J. Fustos, F. Farshchi, and H. Yun, “SpectreGuard: An Efficient Data-
centric Defense Mechanism against Spectre Attacks,” DAC’19.

[10] S. Dinesh, G. Garrett-Grossman, and C. W. Fletcher, “SynthCT:
Towards Portable Constant-Time Code,” in NDSS’22.

[11] M. Patrignani and M. Guarnieri, “Exorcising Spectres with Secure
Compilers,” in CCS’21.

[12] Z. Zhang, G. Barthe, C. Chuengsatiansup, P. Schwabe, and Y. Yarom,
“Ultimate SLH: Taking Speculative Load Hardening to the Next
Level,” in USENIX Security’23.

[13] N. Mosier, H. Lachnitt, H. Nemati, and C. Trippel, “Axiomatic
Hardware-Software Contracts for Security,” in ISCA’22.

[14] D. J. Bernstein, “djbsort,” https://sorting.cr.yp.to/.

[15] “ChaCha20 (BearSSL),” https://bearssl.org/gitweb/.

[16] J. Vicarte, P. Shome, N. Nayak, C. Trippel, A. Morrison, D. Kohlbren-
ner, and C. W. Fletcher, “Opening Pandora’s Box: A Systematic Study
of New Ways Microarchitecture Can Leak Private Data,” in ISCA’21.

[17] J. R. S. Vicarte, M. Flanders, R. Paccagnella, G. Garrett-Grossman,
A. Morrison, C. W. Fletcher, and D. Kohlbrenner, “Augury: Us-
ing Data Memory-Dependent Prefetchers to Leak Data at Rest,” in
S&P’22.

[18] S. Deng, N. Matyunin, W. Xiong, S. Katzenbeisser, and J. Szefer,
“Evaluation of Cache Attacks on Arm Processors and Secure Caches,”
IEEE Transactions on Computers, vol. 71, pp. 2248–2262, 2022.

[19] T. Downs, “Hardware Store Elimination,” https://travisdowns.
github.io/blog/2020/05/13/intel-zero-opt.html, 2020, accessed on
17.06.2020.

[20] R. Alur, R. Bodı́k, E. Dallal, D. Fisman, P. Garg, G. Juniwal,
H. Kress-Gazit, P. Madhusudan, M. M. K. Martin, M. Raghothaman,
S. Saha, S. A. Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and
A. Udupa, “Syntax-Guided Synthesis,” in Dependable Software Sys-
tems Engineering, 2015, vol. 40, pp. 1–25.

[21] R. Alur, R. Singh, D. Fisman, and A. Solar-Lezama, “Search-based
program synthesis,” Commun. ACM, vol. 61, pp. 84–93, 2018.

[22] E. Torlak and R. Bodik, “A Lightweight Symbolic Virtual Machine
for Solver-Aided Host Languages,” in PLDI’14.

[23] D. Neider, S. Saha, P. Garg, and P. Madhusudan, “Sorcar: Property-
Driven Algorithms for Learning Conjunctive Invariants,” in SAS, ser.
Lecture Notes in Computer Science, vol. 11822, 2019, pp. 323–346.

[24] P. Garg, C. Löding, P. Madhusudan, and D. Neider, “ICE: A robust
framework for learning invariants,” in CAV’14.

[25] C. Flanagan and K. R. M. Leino, “Houdini, an annotation assistant
for ESC/Java,” in FME’01.

[26] A. Sodani and G. S. Sohi, “Dynamic Instruction Reuse,” in ISCA’97.

[27] Y. Yarom, D. Genkin, and N. Heninger, “CacheBleed: A Timing
Attack on OpenSSL Constant Time RSA,” Journal of Cryptographic
Engineering, vol. 7, pp. 99–112, 2017.

[28] D. A. Osvik, A. Shamir, and E. Tromer, “Cache Attacks and Coun-
termeasures: The Case of AES,” in CT-RSA’06.

[29] Y. Yarom and K. Falkner, “Flush+Reload: A high resolution, low
noise, L3 cache side-channel attack,” in USENIX Security’14.

[30] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation Leak-aside
Buffer: Defeating Cache Side-channel Protections with TLB Attacks,”
in USENIX Security’18.

[31] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Jump over
ASLR: Attacking branch predictors to bypass ASLR,” in MICRO,
2016.

[32] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Understand-
ing and Mitigating Covert Channels Through Branch Predictors,”
TACO’16.

[33] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. P. Garcı́a, and
N. Tuveri, “Port Contention for Fun and Profit,” in S&P, 2019.

[34] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner, A. Sorniotti,
B. Falsafi, M. Payer, and A. Kurmus, “SMoTherSpectre: Exploiting
Speculative Execution through Port Contention,” in CCS’19.

[35] B. Gras, C. Giuffrida, M. Kurth, H. Bos, and K. Razavi, “ABSynthe:
Automatic Blackbox Side-channel Synthesis on Commodity Microar-
chitectures,” in NDSS’20.

[36] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and
H. Shacham, “On Subnormal Floating Point and Abnormal Timing,”
in S&P’15.

[37] J. Großschädl, E. Oswald, D. Page, and M. Tunstall, “Side-Channel
Analysis of Cryptographic Software via Early-Terminating Multipli-
cations,” in ICISC’09.

[38] B. Coppens, I. Verbauwhede, K. D. Bosschere, and B. D. Sutter,
“Practical Mitigations for Timing-Based Side-Channel Attacks on
Modern x86 Processors,” in S&P’09.

[39] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre At-
tacks: Exploiting Speculative Execution,” in S&P’19.

[40] D. Evtyushkin and D. Ponomarev, “Covert Channels through Random
Number Generator: Mechanisms, Capacity Estimation and Mitiga-
tions,” in CCS’16.

[41] Z. N. Zhao, A. Morrison, C. W. Fletcher, and J. Torrellas, “Binoculars:
Contention-Based Side-Channel Attacks Exploiting the Page Walker,”
in USENIX Security’22.

[42] A. Moghimi, J. Wichelmann, T. Eisenbarth, and B. Sunar, “MemJam:
A False Dependency Attack Against Constant-Time Crypto Imple-
mentations,” International Journal of Parallel Programming, vol. 47,
pp. 538–570, 2019.

[43] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida, “ASLR on
the Line: Practical Cache Attacks on the MMU,” in NDSS’17.

[44] D. Molnar, M. Piotrowski, D. Schultz, and D. Wagner, “The Pro-
gram Counter Security Model: Automatic Detection and Removal of
Control-Flow Side Channel Attacks,” IACR’05.

[45] M. Vassena, C. Disselkoen, K. v. Gleissenthall, S. Cauligi, R. G.
Kıcı, R. Jhala, D. Tullsen, and D. Stefan, “Automatically Eliminating
Speculative Leaks from Cryptographic Code with Blade,” POPL’21.

https://developer.arm.com/docs/ddi0595/latest/aarch32-system-registers/cpsr
https://developer.arm.com/docs/ddi0595/latest/aarch32-system-registers/cpsr
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://github.com/rvkrypto/riscv-zkt-list
https://github.com/rvkrypto/riscv-zkt-list
https://sorting.cr.yp.to/
https://bearssl.org/gitweb/
https://travisdowns.github.io/blog/2020/05/13/intel-zero-opt.html
https://travisdowns.github.io/blog/2020/05/13/intel-zero-opt.html

[46] D. J. Bernstein, “The Poly1305-AES Message-Authentication Code,”
in FSE’05.

[47] A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing Digital Side-
Channels through Obfuscated Execution,” in USENIX Security’15.

[48] B. A. Fisch, D. Vinayagamurthy, D. Boneh, and S. Gorbunov, “Iron:
Functional Encryption using Intel SGX,” in CCS’17.

[49] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and
I. Stoica, “Opaque: An Oblivious and Encrypted Distributed Analytics
Platform,” in NSDI’17.

[50] R. Choudhary, A. Wang, Z. N. Zhao, A. Morrison, and C. Fletcher,
“DECLASSIFLOW: A Static Analysis for Modeling Non-Speculative
Knowledge to Relax Speculative Execution Security Measures,” in
CCS’23.

[51] S. E. Richardson, “Exploiting trivial and redundant computation,” in
ARITH’93.

[52] J. J. Yi and D. J. Lilja, “Improving processor performance by sim-
plifying and bypassing trivial computations,” in ICCD’02.

[53] E. Atoofian and A. Baniasadi, “Improving energy-efficiency by by-
passing trivial computations,” in IPDPS’05.

[54] A. Sodani and G. Sohi, “Understanding the Differences between
Value Prediction and Instruction Reuse,” in MICRO’98.

[55] C. Molina, A. González, and J. Tubella, “Dynamic Removal of
Redundant Computations,” in ICS’99.

[56] S. Mittal, “A survey of value prediction techniques for leveraging
value locality,” CCPE’17, vol. 29, no. 21, p. e4250, 2017.

[57] C. Sakhuja, A. Subramanian, P. Joshi, A. Jain, and C. Lin, “Combin-
ing Branch History and Value History For Improved Value Predic-
tion,” CVP-Championship Value Prediction, 2019.

[58] A. Seznec, “Exploring value prediction with the eves predictor,” in
CVP-Championship Value Prediction, 2018.

[59] D. Brooks and M. Martonosi, “Dynamically exploiting narrow width
operands to improve processor power and performance,” in HPCA’99.

[60] R. Canal, A. González, and J. E. Smith, “Very low power pipelines
using significance compression,” in MICRO’00.

[61] S. Wang, J. Hu, S. G. Ziavras, and S. W. Chung, “Exploiting narrow-
width values for thermal-aware register file designs,” in DATE’09.

[62] K. Lepak and M. Lipasti, “Silent Stores for Free,” in MICRO’00.

[63] I. Kim and M. H. Lipasti, “Implementing Optimizations at Decode
Time,” in ISCA’02.

[64] T. Downs, “Hardware Store Elimination,”
https://travisdowns.github.io/blog/2020/05/13/intel-zero-opt.html,
2020.

[65] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi,
“Verifying Constant-Time Implementations,” in USENIX Security’16.

[66] G. Barthe, P. R. D’argenio, and T. Rezk, “Secure information flow
by self-composition,” Mathematical Structures in Computer Science,
vol. 21, no. 6, pp. 1207–1252, 2011.

[67] M. R. Fadiheh, J. Müller, R. Brinkmann, S. Mitra, D. Stoffel, and
W. Kunz, “A Formal Approach for Detecting Vulnerabilities to Tran-
sient Execution Attacks in Out-of-Order Processors,” in DAC’20.

[68] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D. Bian-
colin, C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz,
S. Karandikar, B. Keller, D. Kim, J. Koenig, Y. Lee, E. Love,
M. Maas, A. Magyar, H. Mao, M. Moreto, A. Ou, D. A. Patterson,
B. Richards, C. Schmidt, S. Twigg, H. Vo, and A. Waterman, “The
Rocket Chip Generator,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2016-17, 2016.

[69] K. v. Gleissenthall, R. G. Kıcı, D. Stefan, and R. Jhala, “Solver-Aided
Constant-Time Hardware Verification,” in CCS’21.

[70] A. Betts, N. Chong, A. Donaldson, S. Qadeer, and P. Thomson,
“GPUVerify: a verifier for GPU kernels,” in OOPSLA’12.

[71] A. Lal and S. Qadeer, “Powering the static driver verifier using
corral,” in FSE’14.

[72] K. L. McMillan, “Interpolation and SAT-based model checking,” in
CAV’03.

[73] R. M. Karp, “Reducibility Among Combinatorial Problems,” in Pro-
ceedings of a symposium on the Complexity of Computer Computa-
tions, ser. The IBM Research Symposia Series, R. E. Miller and J. W.
Thatcher, Eds., 1972, pp. 85–103.

[74] V. Chvatal, “A greedy heuristic for the set-covering problem,” Math-
ematics of operations research, vol. 4, no. 3, pp. 233–235, 1979.

[75] riscv, “riscv-opcodes repository,” https://github.com/riscv/
riscv-opcodes, 2023, [Online; accessed 18-Apr-2023].

[76] H. Barbosa, C. W. Barrett, M. Brain, G. Kremer, H. Lachnitt,
M. Mann, A. Mohamed, M. Mohamed, A. Niemetz, A. Nötzli,
A. Ozdemir, M. Preiner, A. Reynolds, Y. Sheng, C. Tinelli, and
Y. Zohar, “cvc5: A Versatile and Industrial-Strength SMT Solver,”
in TACAS, ser. Lecture Notes in Computer Science, D. Fisman and
G. Rosu, Eds., vol. 13243, 2022, pp. 415–442.

[77] C. Wolf, “Yosys Open SYnthesis Suite,” https://yosyshq.net/yosys/.

[78] ucb bar, “V-Scale,” https://github.com/LGTMCU/vscale, 2023, [On-
line; accessed 18-Apr-2023].

[79] lowRISC, “Ibex,” https://github.com/lowRISC/ibex, 2023, [Online;
accessed 18-Apr-2023].

[80] L. Deutschmann, J. Müller, M. R. Fadiheh, D. Stoffel, and W. Kunz,
“Towards a Formally Verified Hardware Root-of-Trust for Data-
Oblivious Computing,” in DAC’22.

[81] L. Deutschmann, J. Mueller, M. R. Fadiheh, D. Stoffel, and W. Kunz,
“A scalable formal verification methodology for data-oblivious hard-
ware,” arXiv’23.

[82] K. v. Gleissenthall, R. G. Kıcı, D. Stefan, and R. Jhala, “IODINE:
Verifying Constant-Time Execution of Hardware,” in USENIX Secu-
rity’19.

[83] Z. Wang, G. Mohr, K. von Gleissenthall, J. Reineke, and
M. Guarnieri, “Specification and Verification of Side-channel Security
for Open-source Processors via Leakage Contracts,” in CCS’23.

[84] K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit testing
engine for C,” ACM SIGSOFT Software Engineering Notes, vol. 30,
no. 5, pp. 263–272, 2005.

[85] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated
random testing,” in PLDI’05.

[86] R. Majumdar and K. Sen, “Hybrid concolic testing,” in ICSE’07.

[87] C. Cadar, D. Dunbar, D. R. Engler et al., “Klee: unassisted and
automatic generation of high-coverage tests for complex systems
programs.” in OSDI’08.

[88] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Di-
rected greybox fuzzing,” in CCS’17.

[89] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based whitebox
fuzzing,” in PLDI’08.

[90] M. Zalewski, “AFL: American Fuzzy Lop,” https://lcamtuf.coredump.
cx/afl/, 2023, [Online; accessed 18-Apr-2023].

[91] P. Godefroid, “Fuzzing: Hack, Art, and Science,” Commun. ACM,
vol. 63, p. 70–76, 2020.

https://github.com/riscv/riscv-opcodes
https://github.com/riscv/riscv-opcodes
https://yosyshq.net/yosys/
https://github.com/LGTMCU/vscale
https://github.com/lowRISC/ibex
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/

Appendix A.
Security Proof of CONJUNCT

In this section, we will prove that the set of safe instruc-
tions, Σ̂+, output by CONJUNCT satisfies the Constant-Time
Safe Instruction Set definition CT-SISP(O) (Def. 6.1).

For the purposes of the proof, consider CONJUNCT to
be composed of two black boxes, corresponding to Phase 1
(§4) and Phase 2 (§5) of the analysis. Phase 1 proposes a
set of candidate safe instructions Σ̂+, and Phase 2 learns
an inductive invariant to prove that there does not exist
a composition of said set of instructions that violates the
CONJUNCT 2-safety property. With that in mind, we can
state the main theorem:
Theorem A.1. The set of safe instructions output as Σ̂+ by
CONJUNCT satisfies CT-SISP(O) (Def. 6.1).

Proof. To start, suppose Hind is a final inductive invariant
output by Phase 2 given candidate safe set Σ̂+ (generated,
perhaps, by Phase 1). By definition of an inductive safety
invariant, if we start from a state S |= Hind, any number
of applications of ⇝a, a ∈ Σ̂+ will only reach states that
satisfy Hind and all such states are safe.

With the above in mind, to prove the theorem, it is
sufficient to show that Hind does not contain any predicates
that constrain safe instructions from reading secrets from
the state elements corresponding to the architectural register
file (the ARF). By definition of Hind, this is equivalent to
saying that the ARF emits secret data, i.e., ARF data is
not constrained between the L and R sides of the product
program construction, which matches the semantics and
choice of R in Def. 6.1.

To show that state elements in the ARF are left un-
constrained in Hind, consider the following. Any invariant
needs to satisfy the base case, i.e., allow all positive exam-
ples. The set of positive examples read secret data from R,
i.e., R may be different between the L and R executions of
said positive examples. This means:

• Hind cannot contain Eq on state elements in R.
• Hind also cannot contain any Impl predicates that

prevent safe instructions from accessing secret data as
such a predicate would not be satisfied by a positive
example.

This concludes the proof: We showed that Hind does not
constrain the ARF for safe instructions, and the semantics of
Hind are that any evolution from said unconstrained-ARF
data does not create a safety violation.

Note that the above argument holds for any choice of
O and regardless of the microarchitectural details of the
design D. For example, whether D features bypass paths
(Figure 1), out-of-order/speculative execution, etc. In all
cases, the annotation burden needed to specify R to satisfy
Def. 6.1 is just to specify the ARF.

Discussion: Non-termination. Now that we know that
any safe set output by Phase 2 as Σ̂+ always satisfies our

definition, let’s look at Phase 1. Phase 1 is integral to
CONJUNCT: it proposes different sets of candidate safe
instructions which are then checked by Phase 2 (Phase 2
cannot identify a set of safe instructions by itself). If the set
proposed by Phase 1 can create a composition of instructions
which is unsafe, it will be rejected by Phase 2. A bad Phase
1 will cause CONJUNCT to go around the Phase 1⇆ Phase
2 loop multiple times. This loop may not terminate, e.g., if
Phase 1 never proposes a correct safe set.

There is no way to prove that our Phase 1 will produce
a safe set. At present, our Phase 1 is a heuristic that works
well in practice. For example, our current Phase 1 imple-
mentation only releases secret data architecturally once for
the instruction under test, and never again. This design helps
the analysis scale, and was useful in identifying individual
unsafe instructions. That said, this design will likely not be
able to discover unsafeness that manifests due to interactions
between multiple sources of secret data (since secrets are
emitted only once in Phase 1). Such a case might result
in the Phase 1 ⇆ 2 loop not terminating. We emphasize,
however, that it will never lead to Phase 2 producing an
unsafe invariant. That is, Theorem A.1 holds for all Phase
1 implementations.

Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary

The overarching goal of this paper is to identify instruc-
tions in an ISA that are safe in an unbounded setting with
respect to microarchitectural timing attacks. To prove safety
in the unbounded setting, the paper proposes ConjunCT for
learning inductive invariants from RTL code with minimal
developer annotations. Using ConjunCT, the work identified
inductive invariants for three systems, which helped demon-
strate the safety of certain instructions and ISA optimiza-
tions of three implementations of RISC-V architecture in a
reasonable amount of time.

B.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Provides a Valuable Step Forward in an Established

Field

B.3. Reasons for Acceptance

1) The paper presents a highly automated and principled
approach for identifying safe and unsafe instructions
in an ISA represented in RTL with minimal developer
annotations.

2) The paper presents a Domain-Specific Language (DSL)
for expressing invariants along with an automated in-
ductive invariant learning approach called CONJUNCT,
which runs on top of SORCAR/Houdini and is crucial
in formally proving instruction safety in an unbounded
setting.

3) The effectiveness of CONJUNCT has been demon-
strated in three implementations of the RISC-V archi-
tecture in which it was able to learn the necessary
inductive invariants necessary to discharge the proof
of unbounded safety of different instructions.

